Que	Question		Expected Answers	Marks	Additional Guidance	
1	а	i	 (atoms of the) same element OR same atomic no. OR no. of protons AND with different numbers of neutrons OR different masses ✓ 	1	IGNORE 'same number of electrons' DO NOT ALLOW 'different numbers of electrons' DO NOT ALLOW 'different relative atomic masses DO NOT ALLOW 'elements with different numbers of neutrons' without mention of same protons OR same atomic number	
		ii	 same (number of) electrons (in the outer shell) OR same electron configuration OR structure ✓ 	1	 DO NOT ALLOW different number of protons IGNORE 'same number of protons' IGNORE 'they are both carbon' OR 'they are both the same element' 	
		111	mass of the isotope compared to 1/12th OR mass of the atom compared to 1/12th ✓ (the mass of a) carbon-12 OR ¹² C (atom) ✓	2	 IGNORE reference to average OR weighted mean (i.e. correct definition of relative atomic mass will score both marks) ALLOW mass of a mole of the isotope/atom with 1/12th the mass of a mole OR 12 g of ✓ carbon-12 ✓ ALLOW 2 marks for: 'mass of the isotope OR mass of the atom compared to ¹²C atom given a mass of 12.0' i.e. 'given a mass of 12' communicates the same idea as 1/12th.' 	

Question	Expected Answers	Marks	Additional Guidance	
			ALLOW 12C OR C12	
			ALLOW FOR 2 MARKS:	
			mass of the isotope	
			mass of 1/12th mass of carbon - 12	
			i.e. fraction is equivalent to 'compared to'	
			ALLOW 1 MARK FOR a mix of mass of atom and mass of mole of atoms, i.e.:	
			'mass of the isotope/mass of an atom compared with 1/12th the mass of a mole OR 12 g of carbon-12.'	
b		5	Use annotations with ticks, crosses etc. for this part.	
			All five marking points are independent	
	giant covalent (lattice) 🗸		ALLOW giant atomic OR giant molecular OR macromolecular	
	layers 🗸		ALLOW planes OR sheets Allow diagram showing at least two layers	
	Each of the three properties below must be linked to explanation good conductor - because it has mobile electrons OR delocalised electrons OR electrons can move ✓		Electron(s) must be spelt correctly ONCE	
	<i>high melting / boiling point</i> - because strong OR covalent bonds have to be broken \checkmark		DO NOT ALLOW 'strong ionic bonds' OR strong metallic bonds.	
	soft - because there are van der Waals' forces OR			

Qu	Question		Expected Answers		Additional Guidance	
			intermolecular forces OR weak bonds OR weak forces between the layers OR soft - because layers can slide ✓			
	С	i	0.0268 OR 0.027 OR 0.02675 mol ✓	1	NO OTHER ACCEPTABLE ANSWER	
		ii	1.61 x 10 ²² ✓	1	ALLOW 1.6 x 10^{22} up to calculator value ALLOW ECF answer to (i) x 6.02 x 10^{23} ALLOW any value for N_A in the range: $6.0 \times 10^{23} - 6.1 \times 10^{23}$	
			Total	11		

C	Question		Expected Answers	Marks	Additional Guidance	
2	а	i	white precipitate OR white solid ✓	1	DO NOT ALLOW goes white / cloudy / milky / off-white DO NOT ALLOW creamy white precipitate ALLOW milky white precipitate	
		ii	$Ag^{+}(aq) + CI^{-}(aq) \longrightarrow AgCI(s)$ Balanced equation correct \checkmark	2	ALLOW 2 marks AgNO ₃ (aq) + Cl ⁻ (aq) \longrightarrow AgCl(s) + NO ₃ ⁻ (aq) (equation mark and state symbol mark)	
			ALL state symbols correct ✓		ALLOW 1 mark for: AgNO ₃ (aq) + NaCl(aq) → AgCl(s) + NaNO ₃ (aq) (state symbol mark) ALLOW 1 mark for the state symbols for THESE	
					balanced equation ONLY: $Ag^{2+}(aq) + 2CI^{-}(aq) \longrightarrow AgCI_{2}(s)$ $Ag(aq) + CI(aq) \longrightarrow AgCI(s)$	
		iii	(precipitate) dissolves OR disappears OR goes colourless OR goes clear ✓	1	ALLOW forms a solution	
	b	i	removes or kills bacteria OR kills germs OR kills micro-organisms OR make it safe to drink OR sterilises water ✓	1	ALLOW to make water potable IGNORE virus DO NOT ALLOW 'purifies water' DO NOT ALLOW 'antiseptic'	
		ii	it is toxic OR poisonous OR could form chlorinated hydrocarbons ✓	1	ALLOW forms carcinogens OR forms toxins DO NOT ALLOW harmful DO NOT ALLOW 'it causes cancer' (chlorine is not a carcinogen)	
					DO NOT ALLOW 'irritates lungs'	
	C	i	Cl₂ is 0 AND HCl is −1 AND HClO is (+)1 ✓	1	ALLOW 1– ALLOW 1+	

Question	Expected Answers	Marks	Additional Guidance	
ii	It has been both oxidised and reduced OR Its oxidation state has increased and decreased \checkmark it has been oxidised (from 0) to +1 AND it has been reduced (from 0) to -1 \checkmark (These two points together subsume the first marking point)	2	ALLOW 'chlorine' OR 'it' DO NOT ALLOW chlorIDE IF CORRECT OXIDATION STATES IN (i), ALLOW 2 marks for: it is oxidised to form HCIO it is reduced to form HCI	
iii	Cl_2 + 2NaOH → NaClO + NaCl + $H_2O \checkmark$	1	IGNORE state symbols	
d i	$2CIO_2 \rightarrow CI_2 + 2O_2$ OR $CIO_2 \rightarrow \frac{1}{2}CI_2 + O_2 \checkmark$	1	IGNORE state symbols	
ii	divides each % by correct A_r : i. $\frac{1.20}{1.0}:\frac{42.0}{35.5}:\frac{56.8}{16.0}$ OR 1.20, 1.18, 3.55 \checkmark HClO ₃ \checkmark	2	 ALLOW 1 mark for empirical formula of HCl₂O₆ (use of atomic numbers) ALLOW 1 mark for empirical formula of H₃Cl₃O (upside-down expression) ALLOW ECF for use of incorrect A_r values to get empirical formula but only if no over-rounding ALLOW 2 marks for correct answer of HClO₃ 	
	the oxidation number of chlorine ✓	1	 ALLOW 'the oxidation state of chlorine OR oxidation number of chlorine is 5' DO NOT ALLOW 'it' instead of 'chlorine' DO NOT ALLOW 'the oxidation state OR number of chlorIDE is 5' 	
	Total	14		

Q	Question		Answer		Guidance	
3	(a)	(i))		FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED	
			Nuclear charge mark (Across the period) number of protons increases OR greater nuclear charge ✓ Quality of written communication – nuclear OR proton(s) OR nucleus spelled correctly ONCE for the first marking point Distance / shielding mark (Outermost) electrons are in the same shell		Comparison should be used for each mark IGNORE atomic number increases, but ALLOW proton number increases IGNORE nucleus gets bigger IGNORE 'effective nuclear charge increases' DO NOT ALLOW 'charge' increases without reference to nuclear	
			OR (Outermost) electrons experience the same shielding OR Atomic radius decreases ✓ Nuclear attraction (to electron) mark		ALLOW shielding is similar BUT IGNORE 'there is shielding' DO NOT ALLOW sub-shells OR orbitals	
			Greater nuclear attraction (on outermost electrons) OR (outer) electrons are attracted more strongly (to the nucleus) ✓		ALLOW greater nuclear pull for greater nuclear attraction DO NOT ALLOW use of greater nuclear charge for greater nuclear attraction for third mark	
		(ii)	(Diamond and graphite form) gaseous atoms (of carbon when they are ionised) ✓	1	ALLOW the atoms are in the gaseous state	

Question	Answer				Marks	Guidance
(b)		Lithium	Carbon (diamond)	Fluorine	6	ALLOW shared pair of electrons for covalent (bond)
	Structure	Giant	Giant 🗸	Simple		ALLOW vdw for van der Waals' ALLOW temporary-induced or instantaneous-induced for
	Force or bond overcome on melting	Metallic bond	Covalent (bond) ✓	van der Waals' (forces) OR induced dipoles ✓		van der Waals' ALLOW Positive ions for Li ⁺ ions IGNORE 'Lithium ions' but ALLOW 'Positive lithium ions' DO NOT ALLOW Li ²⁺
	Particles between which the force or bond is acting	Li⁺ ions and (delocalised) electrons ✓	Atoms ✓	Molecules ✓		 IGNORE C and IGNORE F₂ IGNORE diagrams but ALLOW names of particles if seen as a label on a diagram DO NOT ALLOW implication that covalent bonds are broken in fluorine for the <i>particles</i> mark of fluorine as this implies the
				Tatal	40	particles are atoms
				Total	10	